部分线性可加模型的两步SCAD惩罚估计与模型识别
wo-step SCAD penalty estimation and model recognition for partially linear additive models
(部分线性可加模型(PLAM)因其更为广泛而受到广泛关注,其具有比线性模型更大的灵活性,在完全非参数模型变得不可行的情况下,可以对高维数据进行拟合。我们考虑了使用样条近似和两步SCAD惩罚来辅助变量选择和参数成分识别的问题。考虑了基于加权复合分位数回归(WCQR)方法的PLAM的估计和变量选择过程,我们的方法的优点是可以快速识别出线性零组件,再在剩下的协变量中区分出参数部分和非参数部分。在温和的条件下,我们证明了得到的该估计的理论性质。此外,所提出的方法能在概率接近1的情况下识别出真模型。
Partly Linear Additive Model (PLAM) has attracted wide attention because it is more extensive. It has greater flexibility than linear model. It can fit high-dimensional data when completely nonparametric model becomes unworkable. We consider the problem of using spline approximation and two-step SCAD penalty to assist variable selection and parameter component identification. Considering the estimation and variable selection process of PLAM based on weighted compound quantile regression (WCQR), the advantage of our method is that the linear zero component can be quickly identified, and then the parametric part and the non-parametric part can be distinguished from the remaining covariables. Under mild conditions, we prove the theoretical properties of the estimator obtained. In addition, the proposed method can recognize the true model when the probability is close to 1.
黎雅莲、冉银霞
数学
部分线性可加模型加权复合分位数回归两步SCAD变量选择
kpartially linear additive modelWeighted compound quantile regressiontwo-step SCADVariable selection
黎雅莲,冉银霞.部分线性可加模型的两步SCAD惩罚估计与模型识别[EB/OL].(2021-03-12)[2025-08-03].http://www.paper.edu.cn/releasepaper/content/202103-126.点此复制
评论