语音识别中最小音素错误特征训练的研究
Research on fMPE for Automatic Speech Recognition
由于传统的最大似然训练准则的局限性,区分性训练的研究逐渐成为当前语音识别领域的一个热点,它已经被应用到实际中并且取得了较好的效果。围绕区分性的概念,可以进行多角度的研究,本文的研究的最小音素错误特征训练就是使用最小音素错误训练准则进行特征变换、参数更新以及模型训练。其研究目的在于调整特征,使得目标函数值趋近最优。研究内容包括高维特征向量和变换矩阵,相关实验证明该算法在词正确率方面,相对于MLE的提升有近3.8%,相对于MPE的提升大概有1.2%。
ue to the limitation of the traditional maximum likelihood training criteria, the research about the discriminative training has become a hot topic in the field of speech recognition. It is applied to practical and has improved the recognition performance. The research is expanded from various aspects. This paper is focus on the feature-MPE. It uses the minimum phone error training criteria to guide the feature transformation, parameter update and model training. The research aims to adjust the feature vector to optimize the objective function. The research includes a high-dimensional feature vectors and transformation matrix. The experiments show the algorithm can improve the correct word rate.(MLE:3.8%. MPE:1.2%)
刘刚、万龙静
通信
语音识别隐马尔可夫模型区分性训练MPEfMPE
speech recognitionHMMdiscriminative trainingMPEfMPE
刘刚,万龙静.语音识别中最小音素错误特征训练的研究[EB/OL].(2014-01-06)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201401-256.点此复制
评论