|国家预印本平台
首页|一种新的基于非对称皮尔逊相似度的协同过滤算法

一种新的基于非对称皮尔逊相似度的协同过滤算法

new Collaborative Filtering Algorithm based on Asymmetric Pearson Similarity

中文摘要英文摘要

在传统的协同过滤算法中,一般通过余弦相似度、皮尔逊相似度、杰卡德皮尔逊相似度等计算用户间的相似度。然而,对于稀疏度高的用户数据矩阵,传统的相似度算法有一定的缺陷,会造成无关用户也可以通过计算得到较高的相似度。在本文中,通过对传统相似度算法进行定性和定量分析,分析其优缺点,并针对其缺点提出了一种新的非对称皮尔逊相似度算法(ASC-Pearson)。通过使用MovieLens数据集进行实验表明,在用户数据稀疏的情况下,新的相似度算法在要优于传统相似度算法。

In traditional collaborative filtering algorithms, the similarity between users is usually calculated by Cosine similarity, Pearson similarity, JacPearson similarity, etc. However, for highly sparse user data matrix, the traditional similarity algorithm has some shortcomings, which will cause the users have a much higher similarity. In this paper, through qualitative and quantitative analysis of traditional similarity algorithms, their advantages and disadvantages were analyzed before putting forward a new asymmetric Pearson similarity algorithm (ASC-Pearson). Experiment with MovieLens dataset shows that, for condition with sparse user data, the new similarity algorithm performs better than the traditional similarity algorithms.

侯宾、李巍海、朱佳龙、吕玉琴

计算技术、计算机技术

计算机应用协同过滤相似度算法推荐系统

computer applicationcollaborative filteringsimilarity algorithmrecommend system

侯宾,李巍海,朱佳龙,吕玉琴.一种新的基于非对称皮尔逊相似度的协同过滤算法[EB/OL].(2014-01-08)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/201401-394.点此复制

评论