|国家预印本平台
首页|A minimum problem with free boundary and subcritical growth in Orlicz spaces

A minimum problem with free boundary and subcritical growth in Orlicz spaces

A minimum problem with free boundary and subcritical growth in Orlicz spaces

来源:Arxiv_logoArxiv
英文摘要

The aim of this paper is to study the heterogeneous optimization problem \begin{align*} \mathcal {J}(u)=\int_{\Omega}(G(|\nabla u|)+qF(u^+)+hu+\lambda_{+}\chi_{\{u>0\}} )\text{d}x\rightarrow\text{min}, \end{align*} in the class of functions $ W^{1,G}(\Omega)$ with $ u-\varphi\in W^{1,G}_{0}(\Omega)$, for a given function $\varphi$, where $W^{1,G}(\Omega)$ is the class of weakly differentiable functions with $\int_{\Omega}G(|\nabla u|)\text{d}x<\infty$. The functions $G$ and $F$ satisfy structural conditions of Lieberman's type that allow for a different behavior at $0$ and at $\infty$. {}{Moreover, $F$ allows for a subcritical growth.} Given functions $q,h$ and constant $\lambda_+\geq 0$, we address several regularity results for minimizers of $\mathcal {J}(u)$, including local $C^{1,\alpha}-$, and local Log-Lipschitz continuities for minimizers of $\mathcal {J}(u)$ with $\lambda_+=0$, and {}{$\lambda_+\geq 0$} respectively. We also establish growth rate near the free boundary for each non-negative minimizer of $\mathcal {J}(u)$ with $\lambda_+=0$, and $\lambda_+>0$ respectively. Furthermore, under additional assumption that $F\in C^1([0,+\infty); [0,+\infty))$, local Lipschitz regularity is carried out for non-negative minimizers of $\mathcal {J}(u)$ with $\lambda_{+}>0$.

Claudianor O. Alves、Jun Zheng、Leandro S. Tavares

数学

Claudianor O. Alves,Jun Zheng,Leandro S. Tavares.A minimum problem with free boundary and subcritical growth in Orlicz spaces[EB/OL].(2018-09-22)[2025-08-10].https://arxiv.org/abs/1809.08518.点此复制

评论