基于点线特征的鲁棒视觉SLAM系统
Robust Visual SLAM System Based on Points and Lines
当前,视觉同时定位与地图构建(SLAM)作为机器人自主定位技术受到广泛关注,但是在光照变化、运动过快、弱纹理环境时算法会失败。为了提高视觉SLAM运行的鲁棒性,本文基于特征法SLAM提出了一种由粗到细的点线特征提取匹配算法。在追踪过程中,根据点特征的匹配结果选择部分图像帧进行线特征提取匹配;在建图过程中,对所有新插入地图的关键帧进行线特征提取匹配。实验表明,基于此算法实现的点线特征视觉SLAM系统能够在满足实时性的同时,挖掘更多环境信息,创建结构更丰富的3D地图,提升视觉SLAM系统的鲁棒性。
urrently, visual simultaneous localization and mapping(SLAM) has received extensive attention as an autonomous localization technology for robots. But the algorithm will fail under the conditions of lighting changes, too fast motion, weak texture environment. In order to improve the robustness of visual SLAM operation, this paper proposes a feature extraction and matching algorithm from coarse to fine point and line based on feature method SLAM. In tracking process, the line feature extraction and matching of part of the image frame is selectively performed according to the matching result of the point feature. In mapping process, line feature extraction and matching are performed on all keyframes newly inserted into the map. Experiments show that the point-line feature visual SLAM system based on this algorithm can meet the real-time tracking requirements, mine more environmental information, create 3D maps with richer structures, and improve the robustness of the visual SLAM system.
闫丹凤、张淼
自动化技术、自动化技术设备计算技术、计算机技术
智能机器人视觉SLAM线特征弱纹理
smart robotvisual simultaneous localization and mappingline featuresweak textures
闫丹凤,张淼.基于点线特征的鲁棒视觉SLAM系统[EB/OL].(2022-03-23)[2025-08-03].http://www.paper.edu.cn/releasepaper/content/202203-350.点此复制
评论