Littlewood-Paley theory for triangle buildings
Littlewood-Paley theory for triangle buildings
For the natural two parameter filtration $(\mathcal{F}_\lambda : \lambda \in P)$ on the boundary of a triangle building we define a maximal function and a square function and show their boundedness on $L^p(\Omega_0)$ for $p \in (1, \infty)$. At the end we consider $L^p(\Omega_0)$ boundedness of martingale transforms. If the building is of $\text{GL}(3, \mathbb{Q}_p)$ then $\Omega_0$ can be identified with $p$-adic Heisenberg group.
Bartosz Trojan、Tim Steger
数学
Bartosz Trojan,Tim Steger.Littlewood-Paley theory for triangle buildings[EB/OL].(2017-03-01)[2025-07-18].https://arxiv.org/abs/1703.00181.点此复制
评论