基于HSV模型和特征点匹配的行人重识别算法
Person re-identification algorithm based on HSV model and keypoints matching
在视频内容分析和多媒体检索等应用中,行人重识别是一项关键的技术,该技术的研究在刑事侦查领域具有重要的现实意义。本文提出了一种基于HSV模型和特征点匹配相结合的行人重识别算法。该算法首先利用HSV模型对行人图像进行预识别,以快速确定备选目标,然后对备选目标利用改进的特征点匹配方法进行精确识别。改进的特征点匹配方法利用环形Gabor滤波器组生成多尺度特征,利用改进的FAST算法和BRIEF算法进行特征点提取与描述,达到了较好的匹配效果。实验结果表明,本文提出的行人重识别算法具有较高的识别准确率,识别速度达到了每秒12帧。
In the application of video content analyses and multimedia retrieval, person re-identification is a critical technique, which has great realistic significance in the field of criminal investigation. This paper proposes a person re-identification algorithm based on HSV model and keypoints matching. It first utilizes HSV model to pre-test pedestrian images and quickly rules out images of which main colors are different from the target, and then tests remaining images by matching keypoints. The method of keypoints matching takes advantage of circularly symmetrical Gabor filters to generate multi-scale features, extracts and matches keypoints by improved FAST and BRIEF algorithms, which achieves better matching effects than SIFT algorithm. Experimental results show that the proposed algorithm can identify pedestrian targets accurately by the speed of 12 frames per second.
彭志勇、常发亮、刘洪彬、别秀德
计算技术、计算机技术
模式识别与智能系统行人重识别HSV模型特征点匹配环形Gabor滤波器
pattern recognition and intelligent systemperson re-identificationHSV modelkeypoints matchingcircularly symmetrical Gabor filters
彭志勇,常发亮,刘洪彬,别秀德.基于HSV模型和特征点匹配的行人重识别算法[EB/OL].(2015-05-18)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201505-216.点此复制
评论