小波网络在带噪声的混沌时间序列预测中的研究
Prediction Research of Chaotic Time Series with Noise Based on Wavelet Neural Network
在小波网络对混沌时间序列建模过程中,噪声会影响网络模型的泛化能力,针对该问题,提出了基于小波去噪方法的小波网络预测框架。在预处理阶段使用小波去噪方法抑制噪声,运用相空间重构理论确定嵌入维数和延迟时间,进而确定回归-小波网络混合模型的结构,结合BP算法和遗传算法对模型的参数进行学习。在带噪声的Mackey-Glass混沌序列预测实验中验证了该框架的有效性。
In the process of modeling chaotic time series, noise will weaken the generalization ability of neural network model, a forecast framework is proposed to solve this problem. Wavelet denoise is introduced in the preprocessing stage to depress the influence of noise, then embedding dimension and delay time are determined by phase space reconstruction theory to choose the best structure of hybrid wavelet neural network, finally the hybrid wavelet neural network model is trained by both genetic algorithm and back-propagation algorithm. Experiment on Mackey-Glass chaotic time series validates the framework.
陈晓云、吴本昌、牛国鹏
计算技术、计算机技术自动化技术、自动化技术设备
小波网络小波去噪混沌时间序列预测相空间重构
hybrid wavelet neural networkchaotic time serieswavelet denoisephase space reconstruction
陈晓云,吴本昌,牛国鹏.小波网络在带噪声的混沌时间序列预测中的研究[EB/OL].(2009-04-14)[2025-08-19].http://www.paper.edu.cn/releasepaper/content/200904-452.点此复制
评论