基于PSO-RBF神经网络的温度试验箱控制
emperature Control of High-Low Temperature Test Chamber based on Improved PSO and RBF Neural Network
综针对密闭的高低温试验箱内温度控制系统具有工况复杂、温湿度间耦合性强、控制滞后、参数多变等特点,为提高温度控制精度用改进的粒子群(PSO)算法对径向基函数(RBF)神经网络PID控制器的网络结构进行优化。在应用PSO算法对RBF神经网络优化时,首先将RBF神经网络中待调节的参数作为粒子,利用粒子群算法的全局搜索和快速收敛性优化径向基神经网络,之后将已优化的各参数结果作为RBF神经网络待调节参数的初始值,最后对其进行二次优化得到参数的最终值。仿真结果表明:该方法有效的缩短了响应时间降低了超调量,提高了稳态精度,与常规PID控制器相比,PSO-RBF优化的PID控制器控制效果更好。
For the temperature control systems of sealed high-low temperature test chamber have characteristics of Temperature and humidity strong coupling, controlling time-delay, parameter changes, etc. It needs using the radial basis function (RBF) neural network controller which is optimized by an improved particle swarm optimization (PSO) algorithm to improve the control accuracy of temperature control system. In the optimization of RBF neural network using particle swarm optimization algorithm, firstly, RBF neural network need to adjust the parameters as particles, based on the fast convergence and global search of the PSO algorithm; secondly, The optimized parameters use as the initial values of RBF'parameters need to adjust; lastly, the second time optimization was conducted to get the final value of the parameters. The simulation results show that the simulation results show that the method proposed here decreases the overshoot, shortens the response time, and the steady state error is small, which can fit the outputs of the reference model and is better than common PID control in control effects.
程秀峰、刘晓平
自动化技术、自动化技术设备
粒子群优化算法RBF神经网络高低温试验箱温度控制
particle swarm optimization algorithmradial basis function neural networkhigh-low temperature test chambertemperature control
程秀峰,刘晓平.基于PSO-RBF神经网络的温度试验箱控制[EB/OL].(2015-11-24)[2025-08-06].http://www.paper.edu.cn/releasepaper/content/201511-477.点此复制
评论