|国家预印本平台
首页|On the completeness of the space $\mathcal{O}_C$

On the completeness of the space $\mathcal{O}_C$

On the completeness of the space $\mathcal{O}_C$

来源:Arxiv_logoArxiv
英文摘要

We give a new proof of the completeness of the space $\mathcal{O}_C$ by applying a criterion of compact regularity for the isomorphic sequence space $\lim_{k\rightarrow} (s\hat \otimes (\ell^\infty)_{-k})$. Along the way we show that the strong dual of any quasinormable Fréchet space is a compactly regular $\mathcal{LB}$-space. Finally, we prove that $\lim_{k\rightarrow}(E_k\hat \otimes_ιF) = (\lim_{k\rightarrow} E_k) \hat \otimes_ιF$ if the inductive limit $\lim_{k \rightarrow}(E_k \hat \otimes_ιF)$ is compactly regular.

Michael Kunzinger、Norbert Ortner

数学

Michael Kunzinger,Norbert Ortner.On the completeness of the space $\mathcal{O}_C$[EB/OL].(2025-07-01)[2025-07-25].https://arxiv.org/abs/2408.11944.点此复制

评论