基于马尔科夫链的移动轨迹预测模型研究
Research of mobile trajectory prediction model based on Markov Chain
人群的活动轨迹看似杂乱无序,实则存在潜在的模式。国内外有相关学者指出人群移动性具有非随机性和周期性,人们总是频繁地出现在某些特定的地点,不管行为活动如何多样性,人群活动总是遵从简单的重现模式,具有高度的可预测性。对于人群移动性,不同学科有不同的研究重点。本文研究主要围绕人群移动性的空间属性,时间属性两个属性展开。空间属性与人类移动的物理空间对应(例如,室内外),时间属性人群移动的时间变化的特征(例如,用户逗留时间)对应。根据人群活动的时空信息得到海量人群移动轨迹,通过学习特定人群的移动轨迹就可获取其移动活动的规律信息,基于此信息的预测不同类型人群的移动轨迹对于探究交通规划、城市规划、流感控制等特定问题有很强的参考价值。构筑基于个体的概念模型,研究局部区域内人群分布和流动规律,并预测用户下一站移动,我们设计并实现了人流活动轨迹的获取与分析模型,并利用有记忆移动马尔科夫链(n-MMC)去预测人群移动轨迹,本文就针对这些模型重点介绍其理论基础和验证实现,并对预测模型的应用前景作了展望。
Personal activities seemingly out of order as molecular motion, but there are potential models. Relevant scholars pointed out that the population mobility has a non random and periodic, people always appear in a particular place, no matter how the diversity of activities, activities of the crowd always follow the simple reproduction mode, predictable height. For people with mobility, different disciplines have different research priorities. This paper focus on spatial attributes of population mobility, the time attribute two attribute spread. Spatial attribute and human moving physical space corresponding to (eg, indoor and outdoor), the characteristic time attributes of the crowd moving time changes. According to the spatial and temporal information population activity get massive population movement trajectory, by learning the trajectory of specific people ,we can get its mobile activities based on the rule of information, mobile path prediction of this information of different kinds of people to explore the traffic planning, urban planning and control of influenza specific problem has a strong reference value. To build a conceptual model based on the individual, the study population distribution in local region and the flow law, and predicting user next stop moving, we design and implement the acquisition and analysis model of pedestrian trajectories, and the use of memory mobile Markoff chain (n-MMC) to predict the crowd moving track, this paper introduce the theory of these models foundation and verifying implementation, and application prospect of the prediction model are discussed.
付东波、郭志刚
交通运输经济数学自动化技术、自动化技术设备
人类移动性移动轨迹马尔科夫模型轨迹预测
Human MobilityMobile TrajectoryMMCTrajectory Prediction
付东波,郭志刚.基于马尔科夫链的移动轨迹预测模型研究[EB/OL].(2014-11-20)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/201411-345.点此复制
评论