|国家预印本平台
首页|自组织特征映射网络的人口分类

自组织特征映射网络的人口分类

Self-organizing feature map of the population classified network

中文摘要英文摘要

人脑对外部输入的感受,神经元的响应按某种顺序排列,并能反应出所感受到的外部刺激的某些物理特征。尽管人脑神经系统是由大量的神经细胞所组成,但是处于空间上不同区域的神经细胞有着不同的分工。自组织特征映射网络也称为Kohonen网络,它是由芬兰学者Teuvo Kohonen于1981年提出的。该网络是一个由全连接的神经元阵列组成的无教师的自组织、自学习网络。Kohonen认为,处于空间中不同区域的神经元有不同的分工,当一个神经网络接受外界输入模式时,将会分为不同的反应区域,各区域对输入模式具有不同的影响性,并且这一过程是神经网络自动完成的。本文举一个简单的人口分类例子,根据数据样本进行学习,并调整自身的权重以达到训练目的来说明Kohonen网络的特征。

he human brain to the external input of the feelings of neurons in response to some kind of order in accordance with, and reflect the excitement felt by some external physical characteristics. Although the human nerve system is the large number of nerve cells, but in different regions of space on the nerve cells have different division of labor. Self-organizing feature map network, also known as Kohonen networks, it is Teuvo Kohonen scholars from Finland in 1981. The network is connected to a wide array of neurons composed of teachers without self-organization, self-learning network. Kohonen that, in the space of neurons in different regions have different division of labor, when a neural network to accept outside input mode, will be divided into different regions, the regional input to the model with different effects, and this process Neural network is automatically completed. This article give a simple example of the classification of the population, according to the data sample to study and adjust its own weight in order to achieve the purpose of training to illustrate the characteristics of the Kohonen network.

张晓颖、刘政

计算技术、计算机技术

自组织特征映射神经元自组织自学习

Self-organizing mapping networkNeuronSelf-organizationSelf-learning

张晓颖,刘政.自组织特征映射网络的人口分类[EB/OL].(2008-12-05)[2025-07-01].http://www.paper.edu.cn/releasepaper/content/200812-187.点此复制

评论