|国家预印本平台
首页|基于不确定优化方法的供应链企业间协同决策研究

基于不确定优化方法的供应链企业间协同决策研究

Supply Chain Inventory Collaboration with Uncertain Demand

中文摘要英文摘要

本论文主要研究不确定需求下供应链的库存协同决策问题。为更准确的模拟供应链末端的不确定需求,本文采用蒙特卡洛仿真技术建立通用的库存策略评价模型,可以灵活应对任何类型的不确定需求,极大的克服了前有研究需求局限性。蒙特卡洛仿真模拟是以巨大的计算消耗为代价的,因此,为平衡蒙特卡洛仿真的计算代价,本论文提出了一种带适应度遗传的新型粒子群算法,对粒子群算法的适应度遗传技术进行多方面探索,并将其成功应用到库存协同策略的优化中。实验表明,通过蒙特卡洛,粒子群算法和和适应度技术的融合运用,能极大提高了供应链库存协同决策的效率,大力提高企业供应链的核心竞争力。

In this paper, a new algorithm is proposed to model the supply chain inventory collaboration and find the optimized collaboration scheme with the uncertain customers' demand. First, Monte Carlo simulation mimicking the behavior of supply chain with uncertain market demand is used to evaluate a coordination scheme. This evaluation method is able to calculate the total inventory cost for uncertain demand with any distribution type. Then a fitness inheritance PSO combined with Monte Carlo simulation is proposed to find an inventory coordination scheme. Various fitness inheritance techniques are studied to construct an effective fitness inheritance PSO for inventory coordination. Experiments show that our approach is effective in reducing the inventory cost of supply chain and saving the computational time.

左兴权、曹鹤婷

经济计划、经济管理自动化技术、自动化技术设备计算技术、计算机技术

供应链协同不确定需求蒙特卡洛仿真粒子群算法适应度遗传

Supply Chain Inventory CollaborationUncertain DemandMonte Carlo SimulationsParticle Swarm OptimizationFitness Inheritance

左兴权,曹鹤婷.基于不确定优化方法的供应链企业间协同决策研究[EB/OL].(2013-12-19)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201312-565.点此复制

评论