|国家预印本平台
首页|p-进Hodge理论和L-不变量

p-进Hodge理论和L-不变量

p-adic Hodge Theory and L-invariants

中文摘要英文摘要

本文我们将介绍由Fontaine等人建立的p-进Hodge理论,特别是其中的比较定理,以及其中的一个小论题L-不变量的已有结果和最新进展,包括笔者的一个结果。p-进Hodge理论的价值首先是Grothendieck认识到的,他提出了所谓的函子性猜想,该猜想被Fontaine等人精确化,已经被Faltings和Tuiji证明。L-不变量可视为p-进Hodge理论中的一个环节。在基域为Q时,L-不变量有若干种定义方法,本文介绍其中的五种。在基域换成全实域时,并非这五种定义都可以推广。其中可以推广的两种分别是Teitelbaum的L-不变量和Fontaine-Mazur的L-不变量。笔者的结果是比较这两种L-不变量。

In this paper we introduce the p-adic Hodge theory developped by Fontaine and others, including the comparision theorems in it, and the topics of L-invariants, including a result of the author. The importance of p-adic Hodge theory was first seen by Grothendieck, who propose the so called functorial conjecture. This conjecture was given precisely by Fontaine and Jansen. Later, it was proved by Faltings and Tuiji. L-invariants can be seen as a topics in p-adic Hodge theory. When the base field is Q, it is well understood. In this paper we will introduce five ways defining the L-invariants. When the base field is a totally real field, not all of these five ways can be generalized. It is Teitebaum's definition and Fontaine-Mazur's that can be generalized. The author's result is to compare these two types of L-invariants.

谢兵永

数学

p-进Hodge理论Fontaine周期环比较定理L-不变量p-进L-函数。

p-adic Hodge TheoryFontaine period ringsComparision TheoremL-invariantsp-adic L-functions.

谢兵永.p-进Hodge理论和L-不变量[EB/OL].(2015-11-27)[2025-04-26].http://www.paper.edu.cn/releasepaper/content/201511-712.点此复制

评论