|国家预印本平台
首页|基于张量分解可视化的手势视频分类研究

基于张量分解可视化的手势视频分类研究

Visualization of Tensor Decomposition and Its Application in Hand Gesture classification

中文摘要英文摘要

随着数据的爆发式的增长,数据的呈现形式由低阶向高阶发展,张量在组织及呈现高阶数据时具有天然优势。由于手势视频可表征为三阶张量的形式,本文以手势视频为目标,研究基于张量高阶奇异值分解(Higher-Order Singular Value Decomposition,HOSVD)的可视化呈现及在手势识别中的应用。对张量分解的可视化呈现部分,本文利用HOSVD获取张量的各阶本征矩阵并用于可视化效果呈现。对手势视频识别部分,首先分别将张量的各阶本征矩阵映射到格拉斯曼流形(Glassman Manifold)上;其次利用典型角(Canonical Angel)计算张量的各阶本征矩阵之间的相似度;最后采用最邻分类器进行分类。在剑桥手势数据库上的实验结果表明,张量分解的可视化呈现对提高手势识别的准确率具有指导性。

With the explosive growth of data, higher order data types are becoming more and more popular. Tensor has a natural advantage in representing higher order data. Since hand gesture classification is widely used in various areas, in this paper, we modeled hand gesture video data with three order tensors, and focused on the visualization of hand gesture video tensor by leveraging Higher-Order Singular Value Decomposition (HOSVD). To achieve better classification performance, we introduced canonical angel to measure the distance of tensors. Experimental results conducted on the Cambridge hand gesture database show the promising classification performance with prior knowledge provided by visualization of tensor decomposition.

刘琛琛、张承乾、井佩光

计算技术、计算机技术

张量分解可视化高阶奇异值分解手势分类?????

ensor DecompositionVisualizationHOSVDHand gesture classification

刘琛琛,张承乾,井佩光.基于张量分解可视化的手势视频分类研究[EB/OL].(2016-05-19)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201605-736.点此复制

评论