Besov Estimates for Sub-elliptic Equations in the Heisenberg Group
Besov Estimates for Sub-elliptic Equations in the Heisenberg Group
本文研究Heisenberg群上非退化散度型次椭圆方程弱解的正则性。基于系数矩阵更一般的假设,本文针对齐次与非齐次两种情形,建立弱解在Besov空间中的水平Calderon-Zygmund估计。本文的研究将丰富发展Heisenberg群上非线性Calderon-Zygmund正则性理论。
In this paper, we deal with weak solutions to non-degenerate sub-elliptic equations in the Heisenberg group, and study the regularities of solutions. We establish horizontal Calderon-Zygmund type estimate in Besov spaces with more general assumptions on coefficients for both homogeneous equations and non-homogeneous equations. This study of regularity estimates expands the Calderon-Zygmund theory in the Heisenberg group.
数学
Heisenberg groupSub-elliptic equationsRegularityBesov spaces
Heisenberg groupSub-elliptic equationsRegularityBesov spaces
.Besov Estimates for Sub-elliptic Equations in the Heisenberg Group[EB/OL].(2024-02-22)[2025-07-16].https://chinaxiv.org/abs/202402.00211.点此复制
评论