|国家预印本平台
首页|具有鲁棒性的安卓恶意软件检测模型研究

具有鲁棒性的安卓恶意软件检测模型研究

Research of Robust Android Malware Detection Model

中文摘要英文摘要

本研究以实现能够对抗攻击的安卓恶意软件检测模型为研究目的,研究包含了安卓软件函数调用图,图神经网络(GNN),对抗攻击等内容。本文提出了一种基于图卷积神经网络(GCN)的安卓恶意软件检测模型,将函数调用图作为图数据类型,使用图神经网络作为分类器,并设计了函数调用图的精简方法,减小了函数调用图的规模,针对攻击者常用的攻击手段,设计了相应的防御手段,增强了模型的鲁棒性。在真实数据集上进行的实验显示,对于安卓恶意软件识别的准确率得分达到了97.5%,针对对抗攻击的识别率准确得分也达到了93.3%,验证了本文提出的函数调用图提取方法,以及图神经网络模型在安卓恶意软件检测以及对抗攻击问题上的有效性。

he purpose of this research is to realize an Android malware adversarial detection model that can resist attacks. The research includes Android function call graphs, graph neural networks (GNN), and adversarial detection. We propose an Android malware detection model based on graph convolutional neural network (GCN), which uses the function call graph as the graph structured data, uses the graph neural network as the classifier, and design a method to reduce the scale of the function call graph. For some common attack methods, we also designed corresponding defense metResearch of Robust Android Malware Detection Modelhods, which greatly enhanced the robustness of the model. Experiments show that our method can effectively detect 97.5% of Android malware, this number also reached 93.3% under adversarial attack. Our experiments on real datasets not only show the effectiveness of the method proposed in this article, but also show the effectiveness of the graph neural network model in Android malware detection and adversarial detection.)

赵经纶、史歌、芦效峰

计算技术、计算机技术

恶意软件,静态检测,函数调用图,图神经网络,对抗攻击

malware detectionfunction call graphgraph neural networkadversarial detection

赵经纶,史歌,芦效峰.具有鲁棒性的安卓恶意软件检测模型研究[EB/OL].(2022-04-20)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/202204-235.点此复制

评论