|国家预印本平台
首页|一种基于密度峰值聚类的社区发现算法

一种基于密度峰值聚类的社区发现算法

new community detection algorithm based on density-peaks clustering

中文摘要英文摘要

社区发现是网络数据挖掘的一个重要研究内容,被用于探索复杂网络中潜在的类结构。针对网络数据,本文对一种密度峰值聚类算法"Clustering by fast search and find of density peaks"(DP)进行了扩展,提出了新的节点局部密度和节点之间的相似性度量,使得该算法能够有效应用于网络社区发现中。新扩展的算法不仅继承了原算法能够发现任意形状的类结构的优点,而且能有效快速地处理网络数据。最后,通过在真实网络数据上的实验分析展示了新算法的有效性。

ommunity detection is an important technique, which is used to discoverthe cluster structureon networks. The density clustering algorithm "Clustering by fast search and find of density peaks"(DP) is extended for network data. This paper proposes a new local density and dissimilarity measure for nodes, so that the DP algorithm can be applied to the community discovery on networks. The extended algorithm not only inherits the advantages of the original algorithm which can find the class structure of any shape, but also it can quickly and effectively process network data. Finally, the experimental analysis on several real network data shows the effectiveness of the new algorithm.

杜航原、白亮、赵越

计算技术、计算机技术

计算机应用复杂网络社区发现密度峰值聚类

omputer application technologyomplex networksCommunity detectionDensity peaks clustering

杜航原,白亮,赵越.一种基于密度峰值聚类的社区发现算法[EB/OL].(2017-03-09)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/201703-128.点此复制

评论