融入粒子群与蚁群算法对XML群体概率搜索智能分析
he Intelligentized Method of XML Probabilistic Query for Multiobjective Optimization Combined PSO and ACO
针对XML文档进行群体搜索的特点与不足,提出利用群智能算法的概率变换规则对其进行改进,采用粒子群算法快速生成信息素分布,利用蚁群算法精确求解,对搜索目标依次进行分解、动态群体选择、自适应群体变化、杂交、多次编码、迭代选择等,不仅可以提高数据搜索的范围、精度和收敛的效率,而且可以避免早熟、降低算法的复杂度,通过仿真与其它XML搜索算法比较,证明这种方法的有效性与可靠性。
iming at the characteristic of XML for multiobjective optimization and the shortcoming of XML probabilistic query , improvements are given in this paper adopting probabilistic rule of swarm intelligence algorithm. It adopts PSO(Particle Swarm Optimization) to give information pheromone to distribute rapidly and makes use of the ACO(Ant Colony Optimization) to get solution preciously, and following actions are taken in turn towards targets: disassemble, dynamic swarm choose, cross, swarm self-adaptive vary, encode repeatedly, iterative choose, etc., which leads to following good results : widening data search range, improving search precision and convergence efficience, avoiding premature convergence, and reducing complexity of the algorithm. The simulation results show its validity and reliability.
刘波、谢东、杨路明、雷刚跃
计算技术、计算机技术
粒子群算法,蚁群算法,杂交算子,XML概率查询,群体
PSO ACO Crossover Operator XML Probabilistic Query Population
刘波,谢东,杨路明,雷刚跃.融入粒子群与蚁群算法对XML群体概率搜索智能分析[EB/OL].(2007-04-11)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/200704-294.点此复制
评论