基于FP-树的多元股票时间序列跨事务关联挖掘
Mining Multiple Stock Time Series Inter-transactionla Association Rules Based FP-tree
由于高计算复杂度,海量数据和多维属性,使得发生在不同时间序列的交易数据关联规则挖掘变得困难。传统的技术,比如基础的技术分析可以为投资者提供预测股票价格的工具。然而这些技术不能发现所有股票之间可能的关系,因此,需要一种不同的方法提供更深入的分析需要。本文提出了一种在实时数据集上跨事务关联规则挖掘(Inter-TARM, Inter-transaction association rules mining)框架,利用高效的预处理,剪枝技术及有效简明的数据结构,能高效地事务间关联规则。
Mining association rules from transactions occurred at different time series is a difficult task because of high computational complexity, very large database size and multidimensional attributes. Traditional techniques, such as fundamental and technical analysis can provide investors with tools for predicting stock prices. However, these techniques cannot discover all the possible relations between stocks and thus there is a need for a different approach that will provide a deeper kind of analysis. We propose a framework called InterTARM on real datasets. Our approach employs effective preprocessing, pruning techniques and available condensed data structure to efficiently discover inter-transaction association rules.
张雪丽
财政、金融计算技术、计算机技术
跨事务关联规则滑动窗口剪枝
Inter-transactionAssociation RulesSliding WindowPruning
张雪丽.基于FP-树的多元股票时间序列跨事务关联挖掘[EB/OL].(2010-07-28)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201007-503.点此复制
评论