糖脂代谢病发生非痴呆型血管性认知障碍的风险预测研究
Study on Risk Prediction of Non-dementia Vascular Cognitive Impairment in Glycolipid Metabolic Diseases
背景 随着我国人口老龄化的不断加剧,血管性认知障碍(VCI)的发病率将逐年增加。非痴呆型血管性认知障碍(VCIND)是 VCI 最常见的形式。目前研究表明,糖脂代谢病会加速 VCI 进程且 VCI 的治疗侧重于控制危险因素,但缺少糖脂代谢病发生 VCIND 的相关研究。目的 分析糖脂代谢病患者发生 VCIND 的危险因素,构建回归模型并进行风险预测。方法 采用横断面研究的方法,选取 2023 年 3—12 月在广东省中医院脑病中心住院的糖脂代谢病患者 410 例,根据简易精神状态检查量表(MMSE)将患者分为认知正常组(MMSE>26 分)和 VCIND 组(MMSE ≤ 26 分)。采用多因素 Logistic 回归评估中老年糖脂代谢病患者发生 VCIND 的影响因素,并构建糖脂代谢病发生 VCIND 的风险预测模型。采用受试者工作特征(ROC)曲线评估模型的预测价值,计算 ROC 曲线下面积(AUC)。结果 410 例患者中认知正常组有 209 例,出现 VCIND201 例。多因素 Logistic 回归分析结果显示,低文化程度[小学以下(OR=25.989,95%CI=5.656~119.33)、小学(OR=6.839,95%CI=3.919~11.933)]、Fazekas 分级(OR=1.700,95%CI=1.124~2.570)是糖脂代谢病人群发生 VCIND 的独立危险因素(P<0.05)。根据多因素 Logistic 回归分析结果建立预测模型为 logit(P)=-1.608+ 小学 ×1.923+ 小学以下 ×3.285+Fazekas 分级 ×0.531,该模型的 AUC 为 0.767(95%CI=0.721~0.813,P<0.001),灵敏度为 0.726,特异度为 0.756,约登指数为 0.482;Hosmer-Lemeshow 拟合优度检验显示,模型拟合效果较好(χ2 =13.404,P=0.099)。结论 低文化程度、Fazekas 分级是糖脂代谢病人群发生VCIND 的独立危险因素。基于此建立的风险预测回归模型,预测价值较好,有助于早期识别糖脂代谢病患者发生 VCI的高危人群。
BackgroundWith the aging population in Chinathe incidence of vascular cognitive impairmentVCI will increase year by year. Non-dementia vascular cognitive impairmentVCINDis the most common form of VCI. At present the research shows that glycolipid metabolic diseases will accelerate the process of VCIand the treatment of VCI focuses on controlling risk factorsbut there is a lack of relevant research on VCIND caused by glycolipid metabolic diseases. ObjectiveTo analyze the factors influencing the occurrence of vascular cognitive impairment no dementiaVCINDwith glycolipid metabolic diseaseconstruct a regression modeland conduct risk prediction. MethodsA cross-sectional study was conducted to select410 patients with glycolipid metabolic diseases who were hospitalized in the encephalopathy center of Guangdong Provincial Hospital of Traditional Chinese Medicine from March to December 2023. Patients were divided into a cognitive normal group MMSE>26 pointsand a VCIND groupMMSE 26 pointsaccording to the Mini-Mental State Examination Scale MMSE. Multi-factor Logistic regression was used to evaluate the influencing factors of VCIND in middle-aged and elderly patients with glycolipid metabolic diseasesand the risk prediction model of VCIND in glycolipid metabolic diseases was constructed. The predictive value of the model was evaluated via the receiver's operating characteristicROCcurveand the area under the ROC curveAUCwas calculated. ResultsAmong the 410 patientsthere were 209 cases in the cognitively normal group and 201 cases in VCIND. The results of multivariate Logistic regression analysis showed that low education level below primary schoolOR=25.98995%CI=5.656-119.33primary schoolOR=6.83995%CI=3.919-11.933 Fazekas gradeOR=1.70095%CI=1.124-2.570were independent risk factors for the occurrence of VCIND in patients with glycolipid metabolismP<0.05. Based on the results of multivariate Logistic regression analysisthe prediction model is logit P=-1.608+ primary school1.923+ below primary school3.285+Fazekas grading0.531. The AUC of this risk prediction regression model is 0.76795%CI=0.721-0.813P<0.001. Hosmer-Lemeshow goodness-of-fit test showed that the model has a good fitting effect2 =13.404P=0.099. ConclusionLow literacy and Fazekas classification are independent risk factors for the development of VCIND in a population of patients with glycolipid metabolism. Establishing a risk prediction regression model based on the above risk factors has a good predictive value and helps to identify the high-risk group of developing VCIND in patients with glycolipid metabolism disease at an early stage.
周子懿、蔡业峰、古珊也
10.12114/j.issn.1007-9572.2024.0122
神经病学、精神病学内科学
认知障碍糖脂代谢病非痴呆型血管性认知障碍脂代谢障碍危险因素多因素Logistic回归分析横断面研究
周子懿,蔡业峰,古珊也.糖脂代谢病发生非痴呆型血管性认知障碍的风险预测研究[EB/OL].(2024-07-17)[2025-08-16].https://chinaxiv.org/abs/202407.00167.点此复制
评论