|国家预印本平台
首页|基于ResNeXt和注意力机制的垃圾分类算法

基于ResNeXt和注意力机制的垃圾分类算法

n Garbage Classification Algorithm Based on ResNeXt and Attention Module

中文摘要英文摘要

本文选择ResNeXt网络作为垃圾分类算法的基准模型,以研究一种全新的垃圾分类算法。本文选用华为云在2019年举办的"垃圾分类挑战杯"数据集,并对该数据集中的数据进行多项数据预处理工作,包括图像的尺寸调整、图像的标准化以及数据增强。其中,数据增强的手段包括空间几何变换、随机擦除和Mixup等。本文通过基线网络对以上数据增强工作进行了验证,实验结果表明数据增强处理对于提高实验结果的准确性有较大帮助。本文同时引入注意力机制以改善ResNeXt网络在垃圾分类问题上的效果。注意力机制包含通道注意力模块和空间注意力模块。实验结果表明,在ResNeXt网络前、后各添加一个顺序组合后的通道注意力模块和空间注意力模块的分类效果最好。综上,本文提出了一种基于ResNeXt并在网络前后添加注意力模块的垃圾分类模型。

In this paper, ResNeXt is the baseline of the garbage classification algorithm. Based on ResNeXt, this paper tries to develop a new garbage classification algorithm. This paper uses the dataset of Huawei Cloud "Garbage Classification Competition" and carries out a number of data preprocessing work on the data set, including the adjustment of the image size, standardization and data augmentation, which consists of several methods including spatial geometric transformation, random erasing and Mixup. This paper verifies the result of the data augmentation, which shows that data augmentation plays a signification role in improving the classification result. Also, Attention Module is involved in improving the classification result. Attention Module consists of Channel Attention Module and Space Attention Module. The experiment result shows that adding an combination of Channel Attention Module and Space Attention Module before and after the ResNeXt is the best solution. To sum up, this paper proposes a garbage classification model based on ResNeXt and adding Attention Module before and after the network.

孙中元、杨军、药泽一

废物处理、废物综合利用计算技术、计算机技术

模式识别与智能系统卷积神经网络ResNeXt数据增强注意力机制

Pattern recognition and intelligent systemconvolutional neural networkResNeXtdata augmentationAttention Module

孙中元,杨军,药泽一.基于ResNeXt和注意力机制的垃圾分类算法[EB/OL].(2020-11-23)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/202011-49.点此复制

评论