Analytic newvectors for $\mathrm{GL}_n(\mathbb{R})$
Analytic newvectors for $\mathrm{GL}_n(\mathbb{R})$
We relate the analytic conductor of a generic irreducible representation of $\mathrm{GL}_n(\mathbb{R})$ to the invariance properties of vectors in that representation. The relationship is an analytic archimedean analogue of some aspects of the classical non-archimedean newvector theory of Casselman and Jacquet--Piatetski-Shapiro--Shalika. We illustrate how this relationship may be applied in trace formulas to majorize sums over automorphic forms on $\mathrm{PGL}_n(\mathbb{Z}) \backslash \mathrm{PGL}_n(\mathbb{R})$ ordered by analytic conductor.
Subhajit Jana、Paul D. Nelson
数学
Subhajit Jana,Paul D. Nelson.Analytic newvectors for $\mathrm{GL}_n(\mathbb{R})$[EB/OL].(2019-11-05)[2025-08-02].https://arxiv.org/abs/1911.01880.点此复制
评论