|国家预印本平台
首页|A Comparison of Quantum Oracles

A Comparison of Quantum Oracles

A Comparison of Quantum Oracles

来源:Arxiv_logoArxiv
英文摘要

A standard quantum oracle $S_f$ for a general function $f: Z_N \to Z_N $ is defined to act on two input states and return two outputs, with inputs $\ket{i}$ and $\ket{j}$ ($i,j \in Z_N $) returning outputs $\ket{i}$ and $\ket{j \oplus f(i)}$. However, if $f$ is known to be a one-to-one function, a simpler oracle, $M_f$, which returns $\ket{f(i)}$ given $\ket{i}$, can also be defined. We consider the relative strengths of these oracles. We define a simple promise problem which minimal quantum oracles can solve exponentially faster than classical oracles, via an algorithm which cannot be naively adapted to standard quantum oracles. We show that $S_f$ can be constructed by invoking $M_f$ and $(M_f)^{-1}$ once each, while $\Theta(\sqrt{N})$ invocations of $S_f$ and/or $(S_f)^{-1}$ are required to construct $M_f$.

Konrad Banaszek、Elham Kashefi、Adrian Kent、Vlatko Vedral

10.1103/PhysRevA.65.050304

物理学计算技术、计算机技术

Konrad Banaszek,Elham Kashefi,Adrian Kent,Vlatko Vedral.A Comparison of Quantum Oracles[EB/OL].(2001-09-20)[2025-07-16].https://arxiv.org/abs/quant-ph/0109104.点此复制

评论