|国家预印本平台
首页|基于多特征融合和集成学习的恶意代码检测研究

基于多特征融合和集成学习的恶意代码检测研究

Malicious code detection based on multi feature fusion and ensemble learning

中文摘要英文摘要

面对网络中日益增长的恶意代码,提出了一种基于多种特征融合和集成学习的恶意代码家族分类方法。收集了80类恶意代码家族的样本,共计31394个,分别提取了恶意代码样本的灰度纹理特征、字节熵直方图特征和API调用频率特征。融合多种特征,使用集成学习算法实现恶意代码家族的分类。实验结果表明,恶意代码特征融合后和集成学习中的Stacking策略结合取得96.72%的分类准确率,与其它分类方法相比,分类准确率得到了提升。

Facing the increasing number of malicious codes in the network, a classification method of malicious code families based on multiple features fusion and ensemble learning is proposed.A total of 31394 samples of 80 types of malicious code families were collected, and the gray-scale texture features, byte entropy histogram features and frequency features of API callsof malicious code samples were extracted.Combine multiple features and use algorithms of ensemble learning to classify malicious code families.The experimental results show thatthe classification accuracy of 96.72% is achieved by combining the fusionfeatures of malicious code with stacking strategy in ensemble learning. Compared with other classification methods, the classification accuracy is improved.

姜倩玉、贾立鹏、王凤英

计算技术、计算机技术

网络安全恶意代码特征融合集成学习Stacking

network securitymalicious codefeature fusionensemble learningStacking

姜倩玉,贾立鹏,王凤英.基于多特征融合和集成学习的恶意代码检测研究[EB/OL].(2021-03-12)[2025-07-19].http://www.paper.edu.cn/releasepaper/content/202103-131.点此复制

评论