|国家预印本平台
首页|MOOC中学生流失现象分析与预警

MOOC中学生流失现象分析与预警

Student Churn Analysis and Prediction on MOOC

中文摘要英文摘要

慕课(Massive Open Online Course, 简称MOOCs,音译为"慕课")是一种兴起于 2012 年的新型的在线教育模式。经过一段时间的发展和观察,学生参与 MOOC 课程往往很难坚持到最后,大约只有平均而言5% 左右的学生可以完成课业任务。学生的严重流失现象制约了MOOC的发展。本文通过观察了《数据结构与算法》 MOOC 课程学生完成课程的情况,对影响学生的因素进行了分析,并结合课程设计进行了深入讨论。此外,本文提出了一种通用的在线预警学生流失系统,以期帮助降低学生流失率。该系统由行为采样器、分类器构成,对不同的课程,提供可选的差分器和衰减器,通过无人工监督的方式,在课程进行中对学生流失进行预警。该系统基于《数据结构与算法》课程进行了深入测试。为了验证其可扩展性,对于《计算概论》 MOOC 课程进行了重复实验,结果表明系统具有较好的可扩展性,但在扩展使用时,需要分析课程特点,选择适当的可选组件。基于以上研究,结合通过对行为特征的分析,提出了部分引导学生学习的可行建议。

he campaign of Massive Open Online Courses (MOOCs) in the area of e-learning and distant education gains significant popularity among both students and educators.As observation of MOOC gets deeper, studies pointed out that student, however, can hardly finish a course on MOOCs. Less than average 5% of students could follow course. Such a low retention rate will restrict development of MOOCs in future. This paper shows observation of data on MOOCs. A factor analysis is applied to students' behavioral data. The result is discussed with course design on MOOC platform. A general online system for predicting students' churn is developed. The system consists of sampler, classifier, optional differentiator and optional attenuato. With unsupervised learning, this system can fit on different on-going courses. A discussion of this system with the course Data Structures and Algorithms is conducted. To test the scalability of the system, the system also applied on the course Introduction to Computing. Scalability of the system is fine but an analysis of course and to choose optional components based on the analysis is required. Additionally, based on research above, some suggestions for instructing students on MOOC is given.

陈云帆、张铭

教育计算技术、计算机技术

慕课学生流失预警学生引导

MOOCPrediction of ChurnInstructions for students

陈云帆,张铭.MOOC中学生流失现象分析与预警[EB/OL].(2014-10-09)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/201410-92.点此复制

评论