Real spin bordism and orientations of topological $\mathrm{K}$-theory
Real spin bordism and orientations of topological $\mathrm{K}$-theory
We construct a commutative orthogonal $C_2$-ring spectrum, $\mathrm{MSpin}^c_{\mathbb{R}}$, along with a $C_2$-$E_{\infty}$-orientation $\mathrm{MSpin}^c_{\mathbb{R}} \to \mathrm{KU}_{\mathbb{R}}$ of Atiyah's Real K-theory. Further, we define $E_{\infty}$-maps $\mathrm{MSpin} \to (\mathrm{MSpin}^c_{\mathbb{R}})^{C_2}$ and $\mathrm{MU}_{\mathbb{R}} \to \mathrm{MSpin}^c_{\mathbb{R}}$, which are used to recover the three well-known orientations of topological $\mathrm{K}$-theory, $\mathrm{MSpin}^c \to \mathrm{KU}$, $\mathrm{MSpin} \to \mathrm{KO}$, and $\mathrm{MU}_{\mathbb{R}} \to \mathrm{KU}_{\mathbb{R}}$, from the map $\mathrm{MSpin}^c_{\mathbb{R}} \to \mathrm{KU}_{\mathbb{R}}$. We also show that the integrality of the $\hat{A}$-genus on spin manifolds provides an obstruction for the fixed points $(\mathrm{MSpin}^c_{\mathbb{R}})^{C_2}$ to be equivalent to $\mathrm{MSpin}$, using the Mackey functor structure of $\underlineÏ_*\mathrm{MSpin}^c_{\mathbb{R}}$. In particular, the usual map $\mathrm{MSpin} \to \mathrm{MSpin}^c$ does not arise as the inclusion of fixed points for any $C_2$-$E_{\infty}$-ring spectrum.
Zachary Halladay、Yigal Kamel
数学
Zachary Halladay,Yigal Kamel.Real spin bordism and orientations of topological $\mathrm{K}$-theory[EB/OL].(2025-08-13)[2025-08-24].https://arxiv.org/abs/2405.00963.点此复制
评论