高光谱图像的光谱域小波去噪应用研究
Wavelet-based denoising of spectral domain for hyperspectral Images
成像光谱仪极易受噪声影响。该类仪器采集的高光谱数据衍生分析前,高品质的数据定量处理是必须执行的,尤其在精准农业应用中。本文针对自主开发的扫描成像光谱仪(PIS)采集的高光谱图像数据,提出一种小波阈值去噪方法去降低噪声影响。文中通过与其他常见的去噪方法在像素和域尺度进行比较与评估该方法的性能,同时,利用基于红边位置提取的叶绿素浓度反演结果验证其可靠性。结果表明,利用该方法建立的叶绿素浓度反演模型的决定系数R2从0.586提高到0.811。由此证明,文中提出的去噪方法能有效去除数据噪声,且保持了较好的图像质量,效果显著优于传统去噪方法。
Imaging spectroradiometers are highly susceptible to noise. Accurately quantitative processing with more high quality is obligatory before any derivative analysis, especially for precise agriculture application. Aiming at the Pushbroom Imaging Spectrometer (PIS) developed by us, a wavelet-based threshold denoising method was developed for its hyperspectral imagery data. And its capacity was evaluated through comparing with other popular denoising methods in pixel scale and in region scale. Furthermore, the method was validated in chlorophyll concentration retrieval application based on its red-edge extraction. The result revealed that the determination coefficient R2 of chlorophyll concentration retrieval model was improved from 0.586 to 0.811. It showed that the proposed denoising method allowed efficient denoising while maintaining image quality, and presented significant advantages over conventional denoising methods.
张东彦、黄林生、赵晋陵、杨浩
农业科学研究环境科学基础理论生物科学现状、生物科学发展
高光谱图像PIS光谱域小波去噪
hyperspectral imagePIS spectral domainwaveletdenoising
张东彦,黄林生,赵晋陵,杨浩.高光谱图像的光谱域小波去噪应用研究[EB/OL].(2014-05-05)[2025-08-04].http://www.paper.edu.cn/releasepaper/content/201405-50.点此复制
评论