带有不同权函数的退化拟线性次椭圆方程组弱解的Hölder连续性
Hölder continuity of weak solutions for degenerate quasilinear subelliptic systems with two different weights
我们研究了一类由Hörmander向量场构成的系数依赖于两个不同权函数的退化拟线性次椭圆方程组,通过选取适用于齐次方程的试验函数,得到了齐次方程非负弱上解的弱Harnack不等式,然后利用弱Harnack不等式和Caffarelli的思想证明了退化拟线性次椭圆方程组弱解的Hölder连续性。
We investigate a class of degenerate quasilinear subelliptic systems constructed by Hörmander vector fields with two different weights. By choosing suitable test functions for homogeneous equations, we obtain weak Harnack inequalities for nonnegative weak supsolutions. Then using weak Harnack inequalities and Caffarelli\
崔学伟 、钮鹏程
数学
Hörmander向量场弱解权函数弱Harnack不等式Hölder连续性Liouville定理
Hörmander vecor fieldsweak solutionweightweak Harnack inequalityHölder continuityLiouville theorem
崔学伟 ,钮鹏程.带有不同权函数的退化拟线性次椭圆方程组弱解的Hölder连续性[EB/OL].(2009-11-16)[2025-07-16].http://www.paper.edu.cn/releasepaper/content/200911-440.点此复制
评论