|国家预印本平台
首页|流体中的广义(3+1)维Kadomtsev-Petviashvili-Benjamin-Bona-Mahony方程的孤子,呼吸子,肿块波的研究

流体中的广义(3+1)维Kadomtsev-Petviashvili-Benjamin-Bona-Mahony方程的孤子,呼吸子,肿块波的研究

Solitons, breathers and lumps for a generalized (3+1)-dimensional Kadomtsev-Petviashvili-Benjamin-Bona-Mahony equation in a fluid

中文摘要英文摘要

流体的研究领域包括大气科学、海洋学和天体物理学。在本文中,我们研究了流体中的广义(3+1)维Kadomtsev-Petviashvili-Benjamin-Bona-Mahony方程。通过Hirota方法,得到了该方程的双线性形式、孤子解、呼吸子解和肿块波解。同时,利用图像分析了孤子、呼吸子和肿块波。我们发现,单孤子的振幅和形状在传播过程中保持不变,两个孤子之间的相互作用是弹性的。在传播过程中,呼吸子和肿块波的形状和振幅保持不变。并且我们还给出了方程中系数的改变对单孤子、双孤子、呼吸子和肿块波的影响情况。

Fluids are studied in such disciplines as atmospheric science, oceanography and astrophysics. In this paper, we investigate a generalized (3+1)-dimensional Kadomtsev-Petviashvili-Benjamin-Bona-Mahony equation in a fluid. Via the Hirota method, bilinear forms, soliton, breather and lump solutions of that equation are obtained. At the same time, solitons, breathers and lumps are depicted. We find that the amplitude and shape of the one soliton keep unchanged during the propagation and the interaction between the two solitons is elastic. We observe that the shapes and amplitudes of the breather and lump remain unchanged during the propagation. We present the one solitons, two solitons, breathers and lumps with the influence of the coefficients in the equation.

江彦、刘天智、田播、白钒

非线性科学物理学海洋学

应用数学流体广义(3+1)维Kadomtsev-Petviashvili-Benjamin-Bona-Mahony方程双线性形式孤子呼吸子肿块波

pplied mathematicsFluidGeneralized (3+1)-dimensional Kadomtsev-Petviashvili-Benjamin-Bona-Mahony equationBilinear formsSolitonsBreathersLumps

江彦,刘天智,田播,白钒.流体中的广义(3+1)维Kadomtsev-Petviashvili-Benjamin-Bona-Mahony方程的孤子,呼吸子,肿块波的研究[EB/OL].(2023-01-16)[2025-08-04].http://www.paper.edu.cn/releasepaper/content/202301-42.点此复制

评论