|国家预印本平台
首页|基于鲁棒优化的系统辨识算法研究

基于鲁棒优化的系统辨识算法研究

Research on algorithm for system identification based on robust optimization

中文摘要英文摘要

对不确定数据属于一个有界集,而不是服从特定概率分布的系统辨识问题,本文提出了一种以鲁棒优化为基础的新方法。该方法将系统辨识转化为不确定优化问题,通过选取合适的不确定集合,推导并求解易于计算的鲁棒对等式,达到对未知系统的辨识,仿真结果表明本文方法的可行性和有效性。

For identification of system in which the data is uncertain and only known to belong to a bounded set instead of some probability distributions, a new method based on robust optimization is proposed. This method transforms system identification into uncertain optimization problem, then selecting appropriate uncertainty set, deriving and solving the computationally tractable robust counterpart, finally realizing identification of uncertain system. Simulation results show the feasibility and effectiveness of this method.

黄姣茹、秦新强、钱富才

自动化基础理论计算技术、计算机技术

系统辨识不确定性鲁棒优化半正定规划

System identificationUncertaintyRobust optimizationSemi-definite programming

黄姣茹,秦新强,钱富才.基于鲁棒优化的系统辨识算法研究[EB/OL].(2013-03-29)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201303-994.点此复制

评论