|国家预印本平台
首页|一种通用可扩展的在线警报关联方法

一种通用可扩展的在线警报关联方法

General Scalable Online Alert Correlation Method

中文摘要英文摘要

大规模网络环境下,多样化网络攻击类型产生的高速警报数据流,对警报关联方法的通用性、实时性以及系统开销控制提出了很高的要求。目前警报关联技术相关研究多是基于集中式结构的算法设计,难以满足实时性的要求;而已有少数分布式警报关联系统未深入考虑负载均衡和系统开销控制。为此,本文提出了一种通用可扩展的在线警报关联方法CACDS。CACDS在分布式流处理环境中采用"分派-汇聚"机制作为在线警报关联的基本框架。基于该框架,CACDS采用因果逻辑方法进行关联分析,松弛匹配警报之间的前因后果,能够对各种不同攻击类型进行有效检测。为了充分利用分布式环境下各节点资源,提出一种混合式关联图划分技术,以不同警报类型引起的计算开销和系统开销为依据,警报被映射至不同的关联进程中以实现并行警报关联,保证了系统实时性和低开销。基于Storm平台的原型系统实验表明,与其他方法相比,CACDS具有更好的可扩展性,更高的吞吐率和更低的系统开销。

With the large-scale dynamic network, high-speed network alert dataflow generated by diverse kinds of attack post a high demand on generality, efficiency and overhead control to alert correlation system. The present alert correlation methods are mainly restricted to decentralized algorithm; some simple algorithm parallelization methods do not consider load balancing and overhead. In this paper, we propose CACDS, a general online scalable alert correlation method. CACDS applies "dispatch-aggregate" scheme based online alert correlation framework via distributed stream processing. On the basis of the framework, CACDS employs a causal correlation method to detect diverse attack types based on looseness prerequisite and consequences matching. To provide scalable correlating, a hybrid correlation graph partition solution is proposed to assign the alerts to different servers based on the overhead caused by alerts. A prototype deployment on Storm platform shows that CACDS has good scalability and load balancing. Moreover, CACDS has higher throughput and lower overhead than existing methods.

马行空、王意洁、程力

电子技术应用计算技术、计算机技术通信

计算机应用警报关联因果逻辑关联图划分可扩展性低开销

omputer Applicationsalert correlationcausal-basedcorrelation graph partitionscalabilitycost-efficient

马行空,王意洁,程力.一种通用可扩展的在线警报关联方法[EB/OL].(2015-09-29)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201509-286.点此复制

评论