|国家预印本平台
首页|基于变精度粗糙集的决策树优化算法研究

基于变精度粗糙集的决策树优化算法研究

Method Based on Variable Precision Rough Set to Build Decision Tree

中文摘要英文摘要

应用变精度粗糙集理论,提出了一种利用新的启发式函数构造决策树的方法。该方法以变精度粗糙集的分类质量的量度作为信息函数,对条件属性进行选择。和ID3算法比较,本方法充分考虑了属性间的依赖性和冗余性,尤其考虑了训练数据中的噪声数据,允许在构造决策树的过程中划入正域的实例类别存在一定的不一致性,可简化生成的决策树,提高决策树的泛化能力。

This paper proposes a new heuristic function to build decision trees based on Variable Precision Rough Set. The Measure of Quality of Classification acts as the information function to select the condition attribute in this method. Dependency and redundancy between attributes are considered, especially the noisy data of training sets. A certain inconsistency is allowed to exist in examples of the positive regions, so the method can simplify the decision trees and improve its extensive ability.

常志玲、周庆敏

计算技术、计算机技术

变精度粗糙集决策树分类质量

VPRSdecision treequality of classification

常志玲,周庆敏.基于变精度粗糙集的决策树优化算法研究[EB/OL].(2005-08-15)[2025-07-25].http://www.paper.edu.cn/releasepaper/content/200508-101.点此复制

评论