带有双障碍的反射倒向随机微分方程解的一个推广的存在性定理
Generalized Existence Theorem of Reflected BSDEs with Double Obstacles
本文讨论了系数(生成元)关于y满足左-Lipschitz条件(可能不连续),关于z满足Lipschitz条件的带有双障碍的反射倒向随机微分方程,证明了其解的存在性,并且给出了一个简单的例子说明其解可能不唯一。
his paper proves the existence of solutions of one-dimensional reflected backward stochastic differential equations with double obstacles, where the coefficient (or generator) g(t,y,z) is left-Lipschitz in y (may be discontinuous) and Lipschitz in z. A simple example is given, showing that the solution may be not unique.
周圣武、郑石秋
数学
反射倒向随机微分方程生成元比较定理
Reflected backward stochastic differential equationGeneratorComparison theorem.
周圣武,郑石秋.带有双障碍的反射倒向随机微分方程解的一个推广的存在性定理[EB/OL].(2007-05-22)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/200705-347.点此复制
评论