一类具变指数的抛物方程的解向平衡点的收敛
he convergence to the equilibria for the solutions to some parabolic equations with variable exponents
本文主要研究一类 带有低正则项的抛物型p(x)-laplace方程解的大时间渐进行为。在适当的假设下,我们证明当时间趋于无穷大时,抛物型p(x)-laplace方程的熵解在Lebesgue 空间 $L^q(Omega)$中 收敛到相对应的椭圆方程的熵解(即平衡点)。
his paper is concerned with the large time behavior of solutions to the$p(x)$-Laplacian equations with irregular data. Under properassumptions, we show that the entropy solution of the parabolic$p(x)$-Laplacian equations converges in $L^q(Omega)$ to the unique stationary entropy solution as $t$ tends to infinity.
柴晓娟、钮维生、李海昇
数学
偏微分方程变指数渐进行为
partial differential equation variable exponent asymptotic behavior
柴晓娟,钮维生,李海昇.一类具变指数的抛物方程的解向平衡点的收敛[EB/OL].(2015-02-06)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201502-92.点此复制
评论