基于人工智能的钻速系统优化研究
Optimization of ROP System based on Artificial Intelligence
钻井智能化是近年来的热门话题,准确的钻速预测和优化是钻井工程中的重要研究内容。但是目前已有的相关研究成果大多停留在理论研究阶段,缺少统一的数据处理框架和实际应用的检验。本文提出了一套基于人工智能算法的钻速优化框架,集成了智能控制、数据管理、数据预处理、钻速预测模块和优化模块共五个部分,能够有效地规范钻井数据的实时传输和存储,集成已有的钻速预测和优化算法,为现场钻井平台提供可靠参考。通过钻井现场的测试,钻速优化框架的有效性和实时性均得到了验证。
Intelligent drilling is a hot topic in recent years. Accurate rate of penetration (ROP) prediction and optimization is an essential research field in drilling engineering. However, most of the existing research achievements are still in the theoretical research stage, which lack of a unified data processing framework and actual application test. This paper proposes a ROP optimization framework based on artificial intelligence algorithm. It integrates five parts, namely, intelligent control module, data management module, data preprocessing module, ROP prediction module and ROP optimization module. It can effectively regulate the real-time transmission and storage of drilling data. It also integrates the existing ROP prediction and optimization algorithm, which providing reliable reference for the field drilling platform. Through the field test, the effectiveness and real-time performance of ROP optimization framework are verified.
殷志明、张永忠、李永华、朱玥
钻井工程自动化技术、自动化技术设备计算技术、计算机技术
信号与信息处理钻井工程人工智能钻速预测与优化
Signal and Information Processing Drilling Engineering Artificial Intelligence ROP Prediction and Optimization
殷志明,张永忠,李永华,朱玥.基于人工智能的钻速系统优化研究[EB/OL].(2020-12-07)[2025-08-23].http://www.paper.edu.cn/releasepaper/content/202012-19.点此复制
评论