行对称矩阵的广义逆特征值问题及其最佳逼近
Generalized Inverse Eigenvalue Problem for Row Symmetric Matrices and its Optimal Approximation
本文讨论了行对称矩阵的广义逆特征值问题及其最佳逼近.根据行对称矩阵的性质,得到该类矩阵的广义逆特征值问题的通解,并证明了最佳逼近解的存在性和唯一性,给出了通解和最佳逼近解的表达式.最后提供了求最佳逼近解的算法和数值算例.
In this paper, a generalized inverse eigenvalue problem for row symmetric matrices and its optimal approximate problem are considered. According to the properties of row symmetric matrices, we obtain the general solution to the generalized inverse eigenvalue problem for row symmetric matrices, and prove the existence and uniqueness of the optimal approximate solution. Expressions for the general solution and the optimal approximate solution are presented. At last, a numerical method to find the optimal approximate solution and a numerical experiment are provided.
胡太群、赵丽君、胡锡炎
数学
行对称矩阵广义逆特征值问题最佳逼近
row symmetric matricesgeneralized inverse eigenvalue problemoptimal approximation
胡太群,赵丽君,胡锡炎.行对称矩阵的广义逆特征值问题及其最佳逼近[EB/OL].(2008-10-01)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/200810-11.点此复制
评论