用于求解某些变系数非线性偏微分方程的变换假设法
ransformation-assumption method for solving some nonlinear partial differential equation with variable coefficients
在这篇文章中我们主要介绍求解方程变系数同时与时间变量、空间变量有关的非线性偏微分方程的变换假设方法. 针对变系数非线性方程的求解, 有许多文献对其进行了讨论. 但大多数文献讨论的局限之处在于其涉及方程的变系数或单与时间变量相关或单与空间变量相关. 本文的变换假设方法则针对这种局限性提出. 通过参数变换与合理假设, 变系数的非线性偏微分方程被转化为常系数的常微分方程. 这里我们以变系数非线性 Schrodinger 方程, 与变系数 Sine-Gorden 方程为例来说明我们的方法. 尽管在某些情况下我们不能求得变系数方程的精确解而不得不求相应的近似解, 但是本文以实际的例子说明所提供的变换假设方法的确提供了一种处理非线性变系数方程的新方法.
In this paper, we introduce a transformation-assumption method for solving nonlinear partial differential equation with coefficients variable both in the space and time coordinates. Many works have been done in the nonlinear equations with variable coefficients, but in most of the works, the discussion are limited on the spacial cases which the coefficients are variable only in one coordinate, the space or the time coordinate. A transformation-assumption method, which is used to transform the nonlinear partial differential equations into an ordinary differential equation with constant coefficients under the assumption between the variable coefficients and transformation of independent variables, is proposed in this paper. We employ nonlinear Schrodinger equation with variable coefficients, and Sine-Gorden equation with variable coefficients to illuminate this method, and obtain many solutions for some specific situations. Although in some cases only the approximate solutions are obtained for the corresponding constant coefficients ordinary differential equations instead of the analytic solutions, this method still supply us a new way to deal with the nonlinear equations with variable coefficients.
马双双、周宇斌
数学物理学
变换假设方法 变系数非线性 Schrodinger 方程 变系数 Sine-Gorden 方程.
transformation-assumption method nonlinear Schrodinger equation with variable coefficients Sine-Gorden equation with variable coefficients.
马双双,周宇斌.用于求解某些变系数非线性偏微分方程的变换假设法[EB/OL].(2008-03-21)[2025-06-21].http://www.paper.edu.cn/releasepaper/content/200803-619.点此复制
评论