|国家预印本平台
首页|The $G_2$ geometry of $3$-Sasaki structures

The $G_2$ geometry of $3$-Sasaki structures

The $G_2$ geometry of $3$-Sasaki structures

来源:Arxiv_logoArxiv
英文摘要

We initiate a systematic study of the deformation theory of the second Einstein metric $g_{1/\sqrt{5}}$ respectively the proper nearly $G_2$ structure $\varphi_{1/\sqrt{5}}$ of a $3$-Sasaki manifold $(M^7,g)$. We show that infinitesimal Einstein deformations for $g_{1/\sqrt{5}}$ coincide with infinitesimal $G_2$ deformations for $\varphi_{1/\sqrt{5}}$. The latter are showed to be parametrised by eigenfunctions of the basic Laplacian of $g$, with eigenvalue twice the Einstein constant of the base $4$-dimensional orbifold, via an explicit differential operator. In terms of this parametrisation we determine those infinitesimal $G_2$ deformations which are unobstructed to second order.

Uwe Semmelmann、Paul-Andi Nagy

数学

Uwe Semmelmann,Paul-Andi Nagy.The $G_2$ geometry of $3$-Sasaki structures[EB/OL].(2021-01-12)[2025-07-25].https://arxiv.org/abs/2101.04494.点此复制

评论