|国家预印本平台
首页|拟线性薛定谔方程的基态变号解的存在性

拟线性薛定谔方程的基态变号解的存在性

Ground state sign-changing solutions for a quasilinear Schr\"{o}dinger equation

中文摘要英文摘要

本文主要研究拟线性薛定谔方程解的存在性, 首先考虑如下问题:\begin{eqnarray}\label{1.1}-\triangle u-a(x)\triangle (u^2)u+V(x)u=f(x,u) &x\in \mathbb{R}^N\nonumber\end{eqnarray}其中, V是位势, f是非线性项. 我们对f提出了如下假设:\\$(f_1)$ $f\in C^1(\mathbb{R}^N\times\mathbb{R},\mathbb{R})$ and $\lim\limits_{t\rightarrow0}\frac{f(x,t)}{t}=0$.\\$(f_2)$ $\lim\limits_{t\rightarrow+\infty}\frac{f(x,t)}{t^{22^*-1}}=0.$\\$(f_3)$ $\lim\limits_{|t|\rightarrow+\infty}\frac{F(x,t)}{t^4}=\infty$, where $F(x,t)=\int_0^sf(x,t)dt$.\\$(f_4)$ $\frac{f(x,t)}{|t|^3}$ is increasing for $|t|>0$.\\证明过程主要是利用变分法, 通过运用变号Nehari流形和形变引理, 可以得到一个基态变号解并且有两个结点域.

\ In this paper, we consider the existence of ground state solution and ground state sign-changing solution for the quasilinear Schr\"{o}dinger equation\begin{eqnarray}\label{1.1}-\triangle u-a(x)\triangle (u^2)u+V(x)u=f(x,u) &x\in \mathbb{R}^N\nonumber\end{eqnarray}where $N\geq3$, $V$ is coercive potential, $a(x)$ is a bounded function and $f\in C(\mathbb{R}^N\times\mathbb{R},\mathbb{R})$. The proof is based on variational methods, by using sign-changing Nehari manifold and deformation arguments, we can get a least energy sign-changing solution.

吴行平、赵艳萍、唐春雷

数学物理学

基础数学 拟线性薛定谔方程 变号解

Fundamental Mathematics Quasilinear Schr\"{o}dinger equation Sign-changing solution\par

吴行平,赵艳萍,唐春雷.拟线性薛定谔方程的基态变号解的存在性[EB/OL].(2023-02-07)[2025-07-21].http://www.paper.edu.cn/releasepaper/content/202302-41.点此复制

评论