|国家预印本平台
首页|一种不确定多变量决策树生成算法

一种不确定多变量决策树生成算法

n uncertainty algorithm for multivariate decision tree construction

中文摘要英文摘要

针对常规多变量决策树算法不能有效处理噪声数据影响的问题,将Pawlak.Z粗糙集(rough set,RS)模型中相对核的概念推广到变精度粗糙集(variable precision rough set,VPRS)模型中,并利用其进行决策树初始变量选择;将两个等价关系相对泛化的概念推广为两个等价关系多数包含情况下的相对泛化,并利用其进行决策树初始属性检验;最后,给出一种能够有效消除噪声数据干扰的多变量决策树构造算法。

imed at the problem of the inability for multivariate decision tree algorithm to effectively deal with noisy data, the paper extends the relative core of attributes in rough sets theory to variable precision rough set(VPRS), and uses it for selection of attributes in multivariate tests. Under the condition of majority inclusion relation the paper extends the concept of generalization of one equivalence relation with respect to another one, and uses it for construction of multivariate tests. Finally, we propose an algorithm for multivariate decision tree that can avoid disturbance of noisy data.

邱云飞、邵良杉、孙韶光

计算技术、计算机技术

决策树噪声数据变精度粗糙集相对核

ecision treenoisy datavariable precision rough setrelative

邱云飞,邵良杉,孙韶光.一种不确定多变量决策树生成算法[EB/OL].(2007-04-10)[2025-07-18].http://www.paper.edu.cn/releasepaper/content/200704-259.点此复制

评论