|国家预印本平台
首页|基于Mean Shift算法的运动目标检测

基于Mean Shift算法的运动目标检测

Moving Object Detection Based on Mean Shift Algorithm

中文摘要英文摘要

Mean Shift算法是一种自适应的梯度上升搜索峰值算法,近年来被广泛地应用到图像处理领域。而运动目标检测是一种基本的计算机视觉技术,目标检测的结果将对运动目标的分类、跟踪及行为理解等后续处理产生重要影响。本文利用一种基于Mean Shift算法的混合高斯模型来进行背景建模,并设计了相应的模型更新、运动目标检测以及检测结果修正算法。实验结果表明,该方法在多种不同场景下均取得了较好的检测效果。

Mean Shift, which is widely used in many fields of image processing during recent years, is an adaptive gradient ascending algorithm used to seek the local maximum. Moving object detection is one of the basic techniques in computer vision. Result of detection has great influence on post processing steps such as target classification, object tracking and behavior understanding. In this paper we use a novel Gaussian mixture model based on Mean Shift to represent the background. And corresponding algorithms of model updating, object detection and result correction are also designed. Experiments show that the proposed method performs well in different scenarios.

门爱东、陈景晖

计算技术、计算机技术电子技术应用自动化技术、自动化技术设备

Mean Shift运动目标检测背景建模

Mean Shiftmoving object detectionbackground modeling

门爱东,陈景晖.基于Mean Shift算法的运动目标检测[EB/OL].(2011-09-29)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201109-373.点此复制

评论