|国家预印本平台
首页|向量值函数空间中二阶退化微分方程的最大正则性

向量值函数空间中二阶退化微分方程的最大正则性

Maximal regularity for second order degenerate differential equations in vector-valued functional spaces

中文摘要英文摘要

本文在周期 Lebesgue-Bochner 空间 $L^p(mathbb{T},X)$ , 周期 Besov 空间 $B_{p,q}^s(mathbb{T},X)$ 和周期 Triebel-Lizorkin 空间$F_{p,q}^s(mathbb{T},X)$ 中研究下面二阶退化微分方程的周期解的存在性和唯一性:[(P_2): (Mu)''(t)=Au(t)+f(t), (0leq tleq 2pi)]其中 $ Mu(0)=Mu(2pi),(Mu)'(0)=(Mu)'(2pi)$, $A$ 和 $M$ 为 Banach 空间中闭线性算子满足 $D(A)subset D(M)$. 利用傅里叶乘子技术, 我们给出 $(P_2)$ 存在唯一的解的充要条件。

The purpose of this paper is to study the existence and uniqueness of periodic solutions to the second order degenerate differential equation [(P_2): (Mu)''(t)=Au(t)+f(t), (0leq tleq 2pi)]with periodic boundary conditions $ Mu(0)=Mu(2pi),(Mu)'(0)=(Mu)'(2pi)$, in periodic Lebesgue-Bochner spaces $L^p(mathbb{T},X)$ , periodic Besov spaces $B_{p,q}^s(mathbb{T},X)$ and periodic Triebel-Lizorkin spaces $F_{p,q}^s(mathbb{T},X)$, where $A$ and $M$ are two closed linear operators in a Banach space satisfying $D(A)subset D(M)$. We use operator-valued Fourier multiplier techniques to obtain necessary and sufficient conditions to guarantee the existence and uniqueness of $(P_2)$.

蔡钢、步尚全

数学

算子值傅里叶乘子退化微分方程最大正则性Besov 空间riebel-Lizorkin 空间

Operator-valued Fourier multipliersDegenerate differentialequationMaximal regularityBesov spacesTriebel-Lizorkinspaces

蔡钢,步尚全.向量值函数空间中二阶退化微分方程的最大正则性[EB/OL].(2013-04-16)[2025-08-04].http://www.paper.edu.cn/releasepaper/content/201304-341.点此复制

评论