|国家预印本平台
首页|一类具有时滞和扩散的传染病模型的单稳波

一类具有时滞和扩散的传染病模型的单稳波

Monostable Waves in a Time-delayed and Diffusive Epidemic Model

中文摘要英文摘要

本文研究了带扩散的时滞方程[left{ egin{array}{ll} rac partial {partial t}u_1left( x,t ight) =d_1 riangleu_1left(x,t ight) -a_{11}u_1left( x,t ight) +a_{12}u_2left( x,t ight), \ rac partial {partial t}u_2left( x,t ight) =d_2 riangleu_2left( x,t ight) -a_{22}u_2left( x,t ight) +gleft( u_1left(x,t- au ight) ight)end{array} ight]的波前解的存在性和渐近稳定性。与已往主要研究 $d_2=0$ 情形不同的是,本文主要研究 $d_2>0$的情形,也就是已感染者带扩散的情形。

In this paper, we study the existence and asymptotic stability of traveling waves fronts in the following time-delayed and diffusiveepidemic model[left{ egin{array}{ll} rac partial {partial t}u_1left( x,t ight) =d_1 riangleu_1left(x,t ight) -a_{11}u_1left( x,t ight) +a_{12}u_2left( x,t ight), \ rac partial {partial t}u_2left( x,t ight) =d_2 riangleu_2left( x,t ight) -a_{22}u_2left( x,t ight) +gleft( u_1left(x,t- au ight) ight).end{array} ight]In contrast to the previous study for the case $d_2=0$, here wefocus on the case $d_2>0$, namely, infective human populationdiffuses.

王智诚、王宇晓

数学

传染病模型行波存在性初值问题渐近稳定性

Epidemic modelTraveling wavesExistenceInitial value problemAsymptotic stability

王智诚,王宇晓.一类具有时滞和扩散的传染病模型的单稳波[EB/OL].(2013-01-28)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201301-1111.点此复制

评论