基于小波包去噪的股价组合预测模型
hybrid model based on wavelet packet denoising in stock price forecasting
本文的目的是检验基于小波包去噪和BP模型、ARMA模型、ES模型的组合模型对股价预测的有效性。选取的数据是中国建设银行2010年-2012年三年的日收盘价。首先对建设银行的原始数据建立了三个单个的模型,分别为BP模型、ARMA模型、ES模型,再利用粒子群算法优化组合模型的权重,发现组合模型的预测效果优于单个模型的预测效果。然后对经过小波包去噪的建设银行数据再建立了以上三个模型以及组合模型,结果显示,基于小波包去噪的组合模型的预测效果更加优于未去噪的组合模型,从而说明了本文建立的基于小波包去噪的组合预测模型在股价预测方面的有效性。
he purpose of this article is to use the hybrid model based on the wavelet packet denoising ,BP model, ARMA model and ES model model to examaine the effectiveness of forecasting stock price.The Selection data is China construction bank in 2010-2012, three years of daily closing price. First,with the original data of construction bank, three single models, BP model, ARMA model, ES model are set up respectively, then using particle swarm optimization algorithm combine the weight of models.It finds that the effectiveness in predicting the stock price of the hybrid model is better than any other single model. Then with the data after wavelet packet denoising of China construction bank ,the same hybrid model is set up.According to the results, based on the wavelet packet denoising model's prediction effectiveness is more better than the unwavelet packet denoising model.Thereby the hybrid model based on wavelet packet denoising is effective for stock price forecasting.
牛明飞、池贝
财政、金融自动化技术经济计算技术、计算机技术
股价预测小波包去噪BP模型RMA模型ES模型粒子群算法组合模型
Stock price forecastingWavelet packet denoisingBP modelRMA modelES modelpso algorithmthe hybrid model
牛明飞,池贝.基于小波包去噪的股价组合预测模型[EB/OL].(2013-05-24)[2025-08-05].http://www.paper.edu.cn/releasepaper/content/201305-396.点此复制
评论