|国家预印本平台
首页|基于改进正余弦优化算法的多阈值图像分割

基于改进正余弦优化算法的多阈值图像分割

中文摘要英文摘要

针对多阈值图像分割方法计算量大、分割精度低的问题,提出了基于改进正余弦算法(improved sine cosine algorithm)的多阈值图像分割方法。首先对种群进行混沌初始化来提高初始种群质量;其次根据粒子适应度值的大小自适应地调整参数;最后引入反向学习策略并择优选取粒子。伯克利图像和植物冠层图像分割实验的结果表明,该算法的运行时间较短,而且分割精度较高,具有较强的鲁棒性。

iming at the problem of the computational complexity and low segmentation precision of the multi-threshold image segmentation method, this paper proposed an Improved Sine Cosine Algorithm (ISCA) based multi-threshold image segmentation method. Firstly, this method used a chaotic initialization technique to improve the quality of initial population. Secondly, it introduced an adaptive strategy to adjust the parameters according to the fitness values. Finally, it utilized an opposition-based learning strategy, then the better particles were selected. The results of the Berkeley image and the plant canopy image segmentation experiments show that this method has a satisfied performance in terms of running time and segmentation accuracy. And it has a strong robustness.

彭晓旭、贾鹤鸣、李金夺、邢致恺、郎春博、康立飞

10.12074/201901.00149V1

计算技术、计算机技术

正余弦算法多阈值图像分割混沌初始化自适应反向学习

彭晓旭,贾鹤鸣,李金夺,邢致恺,郎春博,康立飞.基于改进正余弦优化算法的多阈值图像分割[EB/OL].(2019-01-28)[2025-08-19].https://chinaxiv.org/abs/201901.00149.点此复制

评论