|国家预印本平台
首页|基于时空特征统计学习的视频图像雨滴去除问题研究

基于时空特征统计学习的视频图像雨滴去除问题研究

HE REMOVAL OF RAIN FROM VIDEO IMAGES BASED ON STATISTICAL LEARNING OF SPATIOTEMPORAL PROPERTY

中文摘要英文摘要

本文面向视频监控系统,提出了一种去除视频中雨滴的方法。该方法基于雨滴的物理特征和时域特性,在静态场景下采用标量卡尔曼滤波算法,通过追踪图像背景直接去除视频图像中的雨滴。在动态场景下,提出了时空特征统计学习算法,准确区分雨滴像素与运动物体像素,排除运动物体因素的干扰,有效地提高了视频图像的质量。实验证明,与已有算法进行相比,本文提出算法处理效果好,运算速度快,能够满足系统的实时性要求。

In this paper, the method of rain removal from video images is proposed for video surveillance system. Basing on the physical properties and time domain characteristics, it uses the Kalman Filter Algorithm to remove the raindrops directly from video images in the static scene by tracking the image background. While in the dynamic scene, it presents an algorithm based on the statistical learning of spatial-temporal property, which accurately distinguish the rain and moving pixels, exclude the interference of moving objects and improve the quality of video images effectively. Experiments show that the proposed algorithm produce effective results and calculate fast which can meet the real-time requirements of system.

傅慧源、崔晓兵、刘亮

电子技术应用

计算机应用技术雨滴去除卡尔曼滤波时空特征统计学习

omputer Application TechnologyRain RemovalKalman FilterStatistical Learning of Spatiotemporal Property

傅慧源,崔晓兵,刘亮.基于时空特征统计学习的视频图像雨滴去除问题研究[EB/OL].(2013-12-30)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201312-1179.点此复制

评论