|国家预印本平台
首页|基于商品描述文案的点击预测模型

基于商品描述文案的点击预测模型

中文摘要英文摘要

为了预测商品描述文案中商品特征对点击的影响,量化分析用户的消费行为特征及缓解冷启动问题,建立了一种基于LDA模型和文本情感分析的点击预测模型。该模型基于LDA主题模型对商品描述词的分类筛选,对构成词进行情感分析,构建特征向量以表示用户对商品各特征的情感倾向,并通过LightGBM算法进行对点击的预测。模型可以将非结构化文本数据转换为结构化数据,量化用户对商品不同特征的兴趣倾向,并利用不同商品的相似特征缓解冷启动问题。实验结果表明模型有效提高了点击预测效果并能缓解冷启动问题。

In order to predict the impact of commodity characteristics on click in commodity description copy, quantitatively analyze users' consumption behavior characteristics and alleviate the cold start problem, this paper established a click prediction model based on LDA model and text emotion analysis. Based on the LDA topic model, the model classifies and screens the commodity description words, analyzes the emotion of the constituent words, constructs the feature vector to represent the user's emotional tendency to the characteristics of the commodity, and predicts the click through the lightgbm algorithm. The model can transform unstructured text data into structured data, quantify users' interest in different characteristics of goods, and use the similar characteristics of different goods to alleviate the cold start problem. The experimental results show that the model can effectively improve the click prediction effect and alleviate the cold start problem.

盛武、黄皓炫

10.12074/202204.00052V1

计算技术、计算机技术

LightGBM点击预测文本情感分析LDA主题模型冷启动

盛武,黄皓炫.基于商品描述文案的点击预测模型[EB/OL].(2022-04-07)[2025-05-15].https://chinaxiv.org/abs/202204.00052.点此复制

评论