Lasso与其他变量选择方法的模拟比较
Simulation of Lasso and other variable selection methods
目的]提出一种基于收缩估计的新的变量选择方法-Lasso,并比较其与其他变量选择方法的异同。[方法]首先给出了几种常见的变量选择方法如逐步回归、AIC、BIC准则,再通过随机模拟给出了几种方法进行变量选择的结果及相关准确性分析。[结果]随机模拟结果表明,当模拟次数n=200时,Lasso方法的平均错误率已经为0,具有较为明显的优势,随着模拟次数的增加Lasso方法的平均正确率(0.951)达到了相对较高的水平。[结论]Lasso估计具有较好的可解释性,在变量选择中有较广阔的应用前景。
Objective]To propose a new variable selection method-Lasso based on shrinkage estimate, and then compare it with other variable selection methods. [Method] First, we analyzed several common variable selection methods such as stepwise regression, AIC, BIC criteria. After stochastic simulation, we compared correct and incorrect rates of those methods.[Results] The stochastic simulation shows that Lasso's incorrect rate has decreased to 0 (n=200), with obvious advantages. As the simulation times increasing, the average correct rate of Lasso (0.951) has reached a relatively a higher level.[Conclusion] Lasso method is easy to understand, and it has broad application prospects in variable selection.
曲荣华、胡一睿、徐佳静
数学
变量选择Lasso估计IC准则逐步回归
Variable selectionLasso methodIC、BIC CriteriaStepwise
曲荣华,胡一睿,徐佳静.Lasso与其他变量选择方法的模拟比较[EB/OL].(2010-09-07)[2025-05-21].http://www.paper.edu.cn/releasepaper/content/201009-150.点此复制
评论