|国家预印本平台
首页|Isometric rigidity of the Wasserstein space $\mathcal{W}_1(\mathbf{G})$ over Carnot groups

Isometric rigidity of the Wasserstein space $\mathcal{W}_1(\mathbf{G})$ over Carnot groups

Isometric rigidity of the Wasserstein space $\mathcal{W}_1(\mathbf{G})$ over Carnot groups

来源:Arxiv_logoArxiv
英文摘要

This paper aims to study isometries of the $1$-Wasserstein space $\mathcal{W}_1(\mathbf{G})$ over Carnot groups endowed with horizontally strictly convex norms. Well-known examples of horizontally strictly convex norms on Carnot groups are the Heisenberg group $\mathbb{H}^n$ endowed with the Heisenberg-Korányi norm, or with the Naor-Lee norm; and $H$-type Iwasawa groups endowed with a Korányi-type norm. We prove that on a general Carnot group there always exists a horizontally strictly convex norm. The main result of the paper says that if $(\mathbf{G},N_{\mathbf{G}})$ is a Carnot group where $N_{\mathbf{G}}$ is a horizontally strictly convex norm on $\mathbf{G}$, then the Wasserstein space $\mathcal{W}_1(\mathbf{G})$ is isometrically rigid. That is, for every isometry $Φ:\mathcal{W}_1(\mathbf{G})\to\mathcal{W}_1(\mathbf{G})$ there exists an isometry $ψ:\mathbf{G}\to \mathbf{G}$ such that $Φ=ψ_{\#}$.

Dániel Virosztek、Zoltán M. Balogh、Tamás Titkos

数学

Dániel Virosztek,Zoltán M. Balogh,Tamás Titkos.Isometric rigidity of the Wasserstein space $\mathcal{W}_1(\mathbf{G})$ over Carnot groups[EB/OL].(2025-08-14)[2025-08-24].https://arxiv.org/abs/2305.05492.点此复制

评论